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ELASTIC CONSTANTS AND THERMAL EXPANSION OF CERTAIN BODIES WITH A
NONHOMOGENEOUS REGULAR STRUCTURE

(Presented by Academician A. Yu. Ishlinskiy, July 16, 1964)

G. A. Van Fo Fy

ABSTRACT QY490 7

A method is presented for determining elastic
constants and thermal expansion coefficients of non-
homogeneous bodies. The equations derived may be
employed to obtain the formulas for the constants for
orthorhombic, tetragonal, and hexagonal structures.
They also facilitate a determination of the physico-
mechanical characteristics and the stress state of
synthetic materials such as plastic glass, in which

the binder has elastic, viscous properties.
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This article presents a method for determining elastic constants /817%
and thermal expansion coefficients of nonhomogeneous bodies, whose
regular structure is formed by a biperiodic system of n arbitrarily
located hollow cylinders having different diameters. The space between

the cylinders is occupied by a medium.

Note: Numbers in the margin indicate pagination in the original
foreign text.



1. Let E5, vg, 0y and Eg, vg, ag be elastic constants and thermal

a
expansion coefficients of the filler and the medium, z = x; + ixj,

=T - Ty - temperature, ' and § - outer and inner side walls of the
cylinders with the centers at the points a +P (P = mw; + nwy, Wy =
= wibel®, m, n = 0, + 1,...) (Figure 1). The functions pertaining to

the filler are designated by a, those pertaining to the medium are desig-

nated by s, and in addition we have:

-

(on) = F—nsdp S, Ceud=F7" S;dF su;, » F = oibsina. (1)
F : '

The relationship between {oji) and (ejx) on areas which are far re-
moved from local perturbations will be as follows, due to the plane of

elastic symmetry x; = const:

(e = Xy {ond + X12€0a) + X13{0sad + - - - -+ + X146 {(093) + BuiB,

(823) = X13 Con) + X23 (0aa) + X23{0a3d + .0 0vo .+ X6 (Ga3) + Baf,

eas) = X1s¢on) + Xus <5n> + Xas(oad+ .o - + X6 (Gas) + BasBy (2)
CB31) =4 v v o 0 v o s o.s v Xu(oad+ Xaod o ... L )

TS 1= . X o)+ Xgs{o1sd o . . . ..

(83) = Xu (5n> + Xae (%a) + Xao (5:”) Fooeenn + Xes (023) + Bsse

There will be displacements u;(z) when there is a non-zero shift of
the planes (x;, x3) and (x;, x3). Let ¢y and q’a,k be the holomorphic
functions in s and s

619 — i0g = 26O (2), u,=Be§m(z)dz. (3)

If og(z + wj) = ¢5(z) (j = 1,2), then the boundary conditions ex-
pressing the equality of displacements and stresses on the contact sur-

face must be satisfied on n contours located in one element
L,,.d). ‘—‘Lu,koa.k Im'g =0, la,kma.k Iﬂh'—_"ot (4) /818

where Lg x 1, y arethe differential operators of the boundary conditions;




in addition, we have (Ref. 1):

0. == Cg— 2 2 = ck el (z - ak)n 2 Cry = 0;
[ 225

k=l 8=l - (5)
Dop= | Gmi(z—ar)™
On the body surfaces, we define the mean stresses
(0> — i{0s) = 2Go(Da, »> + 2G:(D,). (6)

The formulas for elastic constants are obtained by comparing the dis-
placements of the body having a nonhomogeneous structure with the dis-

placements in the body (1) during a displacement (Ref. 2)

. 2% v
KeaComd + Xes (010 = — 26+ 2 2, {Bhat+ (86— W) G}
s = G+ i S )

PR cey 2 . L oae
X on) + Xes (o) = 26, —2 D (816, , — 85k oF ¢ (%l‘) =9 48,

k==l

2. When we solve the problem of the body extension by stresses
<°ii> =1, X;1, Xj2, X713, X5 are determined. The complex potentials
which satisfy the condition of the stress state periodicity are chosen
in the form of the series (5) and

Fomdo— 3} P I ki (5 — ) —caan® (2—aw)),
k=1 sml 4 (8)

. ‘I'.,,k = 2 b[,,m (Z —_— a,.)"‘.

MO

Here the elliptic functions of the following form (Ref. 1, 2) are

introduced:

n(z)= Z' P{(z—P)?* + z*P® 4 zP%}.

mn

The arbitrary constants are determined from the boundary conditions

Ll.h (Ou wo) - La.k (Qa.ln q’tl.k) ‘Qk' = f k (0), la.k (®¢,k., ‘Fa,k) =0 ( 9)




and from the condition that the principal vector of the forces applied

at the elementary element boundary equals zero,
dom,—Z}duoi—-—zcom,+o,2‘.ck..+ 'r;Zc“ 1—1 2) (10)
kel

The elastic constants are determined by the formulas

d=E, 2 &+ Ein - Bva(va— ) G {5 ) tutos +
k=l. (11)

+ E erabilbe — Z 2 Ekck’” Go-: o-—(bl"" "") 2 Cm + 5: z cu.a}

Only the first two terms are dominant terms here /819

n

= Vs + (Vs — Va) (”a+1)(5;_6; Z C;e.!+ 6; 2 C;.l) '
k=l k=1

Vo1 = 2 (Ve— V) {(x. + 3)co— (¥ + 1) (61 D Ceat 8 c;,,)} i
k=1 :

k=1

n
. X
Va1 = Va1 + (Vs — Va) (% + 1) E;s- Z Chay Vie = —'x—::'
k=1

3. We can find the remaining constants in (1) by solving the prcblem
of the flat deformed state of the body (<5ii> = 0). The form of the solu-
tion and the boundary conditions are determined in (4), (8), (9), (10).

If we subsequently assume that {o3) = 1, (033> = {o23) = 0, etc., we ob-
tain three systems of algebraic equations, from which cy and ck g can be
found.

We have the following from the first system, when {o22> =1, (033) =

= <023> =

l ‘ »
Xy = — v X1g + —57— + { + co'—‘bx Z Cr,s + 6: Z ck.l}o
Rt} Ruml (12)

n

Xos = Xll_'z_é.‘+vll(xll—xls)+(“l+ 1)-6%,: Chae

k==1 .



The following is derived from the second system in the case of

{o33) = 1, (022> = (023D =

Xy =—vyuXig+ —7— % +1 {T+ +622 Cr,3— ( —‘*—') Eclm} ’ (13)

11

Xy =—vuXi 4+ GL (% + 3j‘°;-‘(’f-+ 1) (5; 2 C;.a+ 5; z c;’,)}.‘
. k=i " Ry

In the case of {023) = 1, we have the following from the third system

1
I R L 2 aat 6 3 dal,

Rl

(14)
Xeo = —vaXie+ = T, {1 + (% + 3) co— (%s +- 1)\(51 chrl‘ 8 Z cu)}

k=1 k=1

Here & = vr(kkz - ekz) / F, &' = k2 / F,x = 3-4v, aj | are expansion
coefficients in g(k) (z) Laurent series.

4., TFor increased temperature 6, due to stress redistribution the
transverse cross sections x; = const remain flat as one recedes from the

body edge. Therefore, we have

Cousd = 08 =+ Cernde = 20 + Certda. (13)

The over-all solution in this case is comprised of the solution for

the problem of body extension by stresses {o;;) without allowance for the
interaction between the filler and the medium, as well as the solution
taking this interaction into account. The complex potentials have the
form (5) and (8). The tensor components of thermal expansion are found

in the following form: /820

B = e (o 30 5 (A + W) Ee 3} B (1 4 v0) (Kif —nE).

k=1

(16)
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Bas = &, + (s —B11) var — (s — ag) (1 +‘Va)%:5'—:§ .:
Bsx=aa+(¢o'—3u)‘\’n—(¢-—%)(1-I—Va)‘y,:—:;,v-;—n, (éigi‘)
Bas = ‘Vn{aa'—3u+ (cts — ata) v-i,;:_:'} .

The equations given above can be readily employed to obtain the
formulas for the constants in the case of the simpler structures - ortho-
rhombic, tetragonal and hexagonal.

The formulas obtained are suitable for determining the physico-
mechanical characteristics and the stress state of synthetic materials
like plastic glass, in which the binder has elastic, viscous properties,

and only the constants Eg,vg must be replaced by the corresponding

linear operators.

Figure 1
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